Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 11(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329972

RESUMO

Chronic kidney disease (CKD) involves heterogeneous diseases that affect the renal structure and function. Malnutrition plays a crucial role during patients with CKD on hemodialysis (HD) treatment and is associated with an increased rate and duration of hospitalizations. The aim of this randomized, parallel, intervention-controlled trial was to assess whether the use of daily supplementation with a new nutritional product developed by the Grand Fontaine Laboratories improves the nutritional status and anthropometric parameters of stage 5 CKD patients, compared with standard renal dietary advice, after three months of follow-up. Dietary intake, anthropometric measurements, physical activity, and blood samples were collected at baseline and after three months of intervention. Significant improvements were observed within the intervention group in body weight (1.5 kg [95% CI: 0.9 to 2.12 kg]) and BMI (0.54 kg/m2 [95% CI: 0.31 to 0.77]; p-value between groups, 0.002 and 0.006, respectively). In the control group, significant decreases were observed in transferrin saturation (-5.04% [95% CI: -8.88 to -1.21]) and alpha-tocopherol levels (-3.31 umol/L [95% CI: -6.30 to -0.32]). We concluded that daily dietary intake of a specific renal nutritional complement in CKD patients with or at risk of malnutrition may prevent deterioration in nutritional parameters.

2.
Eur J Nutr ; 60(3): 1669-1677, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32808061

RESUMO

PURPOSE: Inflammatory bowel diseases are associated with an increase in the whole-body protein turnover, thus possibly requiring an additional supply of dietary proteins. Our aim was to evaluate whether increasing dietary protein content could alleviate protein metabolism alterations in the injured splanchnic and peripheral tissues during colitis and spontaneous mucosal healing. METHODS: Mice with acute chemically induced colitis received either a normal protein (P14, 14% as energy), a moderately (P30, 30%) and a very high-protein (P53, 55%) diets. At different times after the challenge, protein synthesis rate was determined in tissues using a flooding dose of 13C valine. RESULTS: Colon, liver and spleen protein synthesis rates were significantly increased after colitis induction, while being decreased in the caecum, kidneys and muscle. Contrastingly to the two other diets, P30 diet consumption allowed faster recovery of the animals, and this coincided with a rapid resaturation of the initial protein synthesis in the colon. In the other tissues studied, the high-protein diets show different effects depending on the dietary protein content consumed and on the examined tissues, with a general trend of P53 in lowering anabolism rates. CONCLUSION: This study highlights the severe impact of acute colonic inflammation on protein metabolism in different organs. In addition, dietary protein content modulated the recovery of the initial protein synthesis rate in the various tissues following colitis induction. P30 diet consumption notably showed a better ability to alleviate protein metabolism perturbations induced by colitis, that may explain its documented beneficial effect on colon mucosal healing.


Assuntos
Colite , Animais , Ceco , Colite/induzido quimicamente , Colo , Sulfato de Dextrana , Proteínas Alimentares , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos
3.
World J Gastroenterol ; 25(27): 3572-3589, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367158

RESUMO

BACKGROUND: Mucosal healing has become a therapeutic goal to achieve stable remission in patients with inflammatory bowel diseases. To achieve this objective, overlapping actions of complex cellular processes, such as migration, proliferation, and differentiation, are required. These events are longitudinally and tightly controlled by numerous factors including a wide range of distinct regulatory proteins. However, the sequence of events associated with colon mucosal repair after colitis and the evolution of the luminal content characteristics during this process have been little studied. AIM: To document the evolution of colon mucosal characteristics during mucosal healing using a mouse model with chemically-induced colitis. METHODS: C57BL/6 male mice were given 3.5% dextran sodium sulfate (DSS) in drinking water for 5 d. They were euthanized 2 (day 7), 5 (day 10), 8 (day 13), and 23 (day 28) d after DSS removal. The colonic luminal environment and epithelial repair processes during the inflammatory flare and colitis resolution were analyzed with reference to a non-DSS treated control group, euthanized at day 0. Epithelial repair events were assessed histo-morphologically in combination with functional permeability tests, expression of key inflammatory and repairing factors, and evaluation of colon mucosa-adherent microbiota composition by 16S rRNA sequencing. RESULTS: The maximal intensity of colitis was concomitant with maximal alterations of intestinal barrier function and histological damage associated with goblet cell depletion in colon mucosa. It was recorded 2 d after termination of the DSS-treatment, followed by a progressive return to values similar to those of control mice. Although signs of colitis were severe (inflammatory cell infiltrate, crypt disarray, increased permeability) and associated with colonic luminal alterations (hyperosmolarity, dysbiosis, decrease in short-chain fatty acid content), epithelial healing processes were launched early during the inflammatory flare with increased gene expression of certain key epithelial repair modulators, including transforming growth factor-ß, interleukin (Il)-15, Il-22, Il-33, and serum amyloid A. Whereas signs of inflammation progressively diminished, luminal colonic environment alterations and microscopic abnormalities of colon mucosa persisted long after colitis induction. CONCLUSION: This study shows that colon repair can be initiated in the context of inflamed mucosa associated with alterations of the luminal environment and highlights the longitudinal involvement of key modulators.


Assuntos
Colite Ulcerativa/imunologia , Colo/patologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/patologia , Regeneração/imunologia , Animais , Movimento Celular , Proliferação de Células , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/citologia , Colo/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , RNA Ribossômico 16S
4.
Nutrients ; 11(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823387

RESUMO

Mucosal healing after an inflammatory flare is associated with lasting clinical remission. The aim of the present work was to evaluate the impact of the amount of dietary protein on epithelial repair after an acute inflammatory episode. C57BL/6 DSS-treated mice received isocaloric diets with different levels of dietary protein: 14% (P14), 30% (P30) and 53% (P53) for 3 (day 10), 6 (day 13) and 21 (day 28) days after the time of colitis maximal intensity. While the P53 diet worsened the DSS- induced inflammation both in intensity and duration, the P30 diet, when compared to the P14 diet, showed a beneficial effect during the epithelial repair process by accelerating inflammation resolution, reducing colonic permeability and increasing epithelial repair together with epithelial hyperproliferation. Dietary protein intake also impacted mucosa-adherent microbiota composition after inflammation since P30 fed mice showed increased colonization of butyrate-producing genera throughout the resolution phase. This study revealed that in our colitis model, the amount of protein in the diet modulated mucosal healing, with beneficial effects of a moderately high-protein diet, while very high-protein diet displayed deleterious effects on this process.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Ração Animal , Animais , Dieta , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Nutrients ; 9(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335546

RESUMO

Inflammatory bowel diseases (IBD), after disease onset, typically progress in two cyclically repeated phases, namely inflammatory flare and remission, with possible nutritional status impairment. Some evidence, either from epidemiological, clinical, and experimental studies indicate that the quantity and the quality of dietary protein consumption and amino acid supplementation may differently influence the IBD course according to the disease phases. For instance, although the dietary protein needs for mucosal healing after an inflammatory episode remain undetermined, there is evidence that amino acids derived from dietary proteins display beneficial effects on this process, serving as building blocks for macromolecule synthesis in the wounded mucosal area, energy substrates, and/or precursors of bioactive metabolites. However, an excessive amount of dietary proteins may result in an increased intestinal production of potentially deleterious bacterial metabolites. This could possibly affect epithelial repair as several of these bacterial metabolites are known to inhibit colonic epithelial cell respiration, cell proliferation, and/or to affect barrier function. In this review, we present the available evidence about the impact of the amount of dietary proteins and supplementary amino acids on IBD onset and progression, with a focus on the effects reported in the colon.


Assuntos
Aminoácidos/administração & dosagem , Proteínas Alimentares/administração & dosagem , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Animais , Colo/metabolismo , Colo/microbiologia , Suplementos Nutricionais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/microbiologia , Cicatrização
6.
Neuropharmacology ; 67: 183-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23178198

RESUMO

Traumatic brain injury (TBI) evokes an intense neuroinflammatory reaction that is essentially mediated by activated microglia and that has been reported to act as a secondary injury mechanism that further promotes neuronal death. It involves the excessive production of inflammatory cytokines and the diminution of neuroprotective and neurotrophic factors, such as the soluble form alpha of the amyloid precursor protein (sAPPα), generated by the activity of α-secretases. Hence, the aim of this study was to examine the effects of etazolate, an α-secretase activator, on acute and belated post-TBI consequences. The mouse model of TBI by mechanical percussion was used and injured mice received either the vehicle or etazolate at the dose of 1, 3 or 10 mg/kg at 2 h post-TBI. Neurological score, cerebral œdema, IL-1ß and sAPPα levels, microglial activation and lesion size were evaluated from 6 to 24 h post-TBI. Spontaneous locomotor activity was evaluated from 48 h to 12 weeks post-TBI, memory function at 5 weeks and olfactory bulb lesions at 13 weeks post-TBI. A single administration of etazolate exerted a dose-dependent anti-inflammatory and anti-œdematous effect accompanied by lasting memory improvement, reduction of locomotor hyperactivity and olfactory bulb tissue protection, with a therapeutic window of at least 2 h. These effects were associated with the restoration of the levels of the sAPPα protein post-TBI. Taken together, these results highlight for the first time the therapeutic interest of an α-secretase activator in TBI.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Edema Encefálico/enzimologia , Edema Encefálico/prevenção & controle , Lesões Encefálicas/enzimologia , Lesões Encefálicas/prevenção & controle , Etazolato/uso terapêutico , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Etazolato/farmacologia , Inflamação/enzimologia , Inflamação/prevenção & controle , Masculino , Camundongos , Fármacos Neuroprotetores , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...